Singular Eigenvalue Problems for Second Order Linear Ordinary Differential Equations
نویسندگان
چکیده
We consider linear differential equations of the form (p(t)x′)′ + λq(t)x = 0 (p(t) > 0, q(t) > 0) (A) on an infinite interval [a,∞) and study the problem of finding those values of λ for which (A) has principal solutions x0(t;λ) vanishing at t = a. This problem may well be called a singular eigenvalue problem, since requiring x0(t;λ) to be a principal solution can be considered as a boundary condition at t = ∞. Similarly to the regular eigenvalue problems for (A) on compact intervals, we can prove a theorem asserting that there exists a sequence {λn} of eigenvalues such that 0 < λ0 < λ1 < · · · < λn < · · · , lim n→∞ λn = ∞, and the eigenfunction x0(t;λn) corresponding to λ = λn has exactly n zeros in (a,∞), n = 0, 1, 2, . . . . We also show that a similar situation holds for nonprincipal solutions of (A) under stronger assumptions on p(t) and q(t). AMS Subject Classification. 34B05, 34B24, 34C10
منابع مشابه
Modified Laplace Decomposition Method for Singular IVPs in the second-Order Ordinary Differential Equations
In this paper, we use modified Laplace decomposition method to solving initial value problems (IVP) of the second order ordinary differential equations. Theproposed method can be applied to linear and nonlinearproblems
متن کاملINVESTIGATION OF BOUNDARY LAYERS IN A SINGULAR PERTURBATION PROBLEM INCLUDING A 4TH ORDER ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we investigate a singular perturbation problem including a fourth order O.D.E. with general linear boundary conditions. Firstly, we obtain the necessary conditions of solution of O.D.E. by making use of fundamental solution, then by compatibility of these conditions with boundary conditions, we determine that, for given perturbation problem, whether boundary layer is formed or not.
متن کاملThe Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
متن کاملThe New M ATLAB Code bvpsuite for the Solution of Singular Implicit BVPs
Our aim is to provide the open domain MATLAB code bvpsuite for the efficient numerical solution of boundary value problems in ordinary differential equations. Motivated by applications, we are especially interested in designing a code whose scope is appropriately wide, including fully implicit problems of mixed orders, parameter dependent problems, problems with unknown parameters, problems pos...
متن کاملAsymptotic iteration method for eigenvalue problems
An asymptotic interation method for solving second-order homogeneous linear differential equations of the form y = λ0(x)y ′ + s0(x)y is introduced, where λ0(x) 6= 0 and s0(x) are C∞ functions. Applications to Schrödinger type problems, including some with highly singular potentials, are presented. PACS 03.65.Ge Asymptotic iteration method for eigenvalue problems page 2
متن کامل